报告题目:Framework for Incremental Spatial Prefix Query Relaxation
报告日期及时间:2015.12.9, 上午10点
报告地点: B403
报告人: Zhifeng Bao
报告人单位:School of CSIT, Royal Melbourne Institute of Technology (RMIT), Australia
报告人简介:
鲍芝峰博士现任澳大利亚皇家墨尔本大学计算机学院助理教授(永久职位),同时为皇家墨尔本-澳洲计算所合办的大数据分析联合实验室的核心成员。2011年于新加坡国立大学取得博士学位,在35名计算机学院博士毕业生中获得最佳博士论文。同时获得新加坡信息发展局颁发的国家科技金牌。受邀在2011届计算机学院毕业典礼上做主题报告,并作为新加坡国立大学优秀毕业生代表接受新加坡总统接见。鲍博士目前有5篇论文在国际会议上获得最佳论文提名,分别是IEEE ICDE09 (International Conference on Data Engineering),DASFAA (International Conference on Database Systems for Advanced Applications),ASONAM (ACM/IEEE Conference on Social Network Analysis and Mining)。目前在国际顶级和一流会议上发表论文50余篇,包括数据库和信息检索的顶级会议ACM SIGMOD, VLDB, IEEE ICDE, SIGIR, CIKM,顶级期刊如VLDB Journal, IEEE TKDE, IEEE TIP。 鲍博士目前论文的引用约700次,H-index为10。
研究方向:主要从事提高数据可用性的研究,具体分为四类问题:(1) 探索式搜索技术;(2) 可视化和互动式的数据探索,(3) 解决信息检索中用户搜索意图同搜索数据本身存在的各种MisMatch问题,比如:模糊近似匹配,搜索引擎的Auto-completion,(4) 搜索结果随时间变化的dynamic summarization。
研究数据类型:关于异构数据,鲍博士对结构化数据,半结构化数据,空间数据,空间文字数据,社交图谱数据的处理都有丰富的R&D经验。
研究方法:设计数据驱动的技术来提高海量异构数据的可用性,为数据分析,数据查询提供高效的基础性操作,同时保证解决方案不破坏现有的数据管理和查询系统的架构。
报告摘要: Geo-textual data are generated in abundance. Recent studies focused on the processing of spatial keyword queries which retrieve objects that match certain keywords within a spatial region. To ensure effective retrieval, various extensions were done including
the allowance of errors in keyword matching and auto-completion using prefix matching. In this paper, we propose INSPIRE, a general framework, which adopts a unifying strategy for processing different variants of spatial keyword queries. We adopt the auto-completion
paradigm that generates an initial query as a prefix matching query. If there are few matching results, other variants are performed as a form of relaxation that reuses the processing done in the earlier phase. The types of relaxation allowed include spatial region expansion and exact/approximate prefix/substring matching. Moreover, since the auto-completion paradigm allows appending characters after the initial query, we look at how query processing done for the initial query and relaxation can be reused in such instances. Compared to existing works which process variants of spatial keyword query as new queries over different indexes, our approach offers a more compelling way to efficient and effective spatial keyword search.
邀请人: 吴小莹 副教授